GAS FURNACES

TZ92UP- SERIES
ECM Equipped
Models with Input Rates of
45,000, 60,000, 75,000,
90,000, 105,000 & 120,000
BTU/HR [13.19, 17.58, 22,
26.38, 30.77 & 35.17 kW]
(45K through 105K Models
Rated at 95% A.F.U.E., 120K
Model Rated at 93.3% A.F.U.E.)

Manufactured for

Thermal Zone®

Philadelphia, PA

95% A.F.U.E. WITH *DUAL COMFORT CONTROL*TWO-STAGE UPFLOW GAS FURNACES

The Thermal Zone® 95% A.F.U.E. with *Dual Comfort Control* line of upflow gas furnaces are designed for utility rooms, closets, alcoves, or attics. **Because of the low-profile 34 inch [864 mm] height, the upflow model can also be used to satisfy most applications.**

The design is certified by CSA.

Features

- Two stages of operation to save energy and maintain optimal comfort level
- Furnace operates at 70% capacity for low-heat and 100% capacity for high-heat.
- Compatible with single or two-stage thermostat. (For optimal performance a two-stage thermostat is recommended.)
- Heat exchanger is constructed of all stainless steel for maximum corrosion resistance and thermal fatigue reliability.
- Low profile "34 inch" design is lighter and easier to handle and leaves room for optional accessories.
- Left or right side gas, electric, and condensate drainage connections.
- Integrated control board manages all operational functions and provides hookups for humidifier and electronic air cleaner.
- An insulated blower compartment, a slow-opening gas valve and a specially designed inducer system make it one of the quietest furnaces on the market today.
- Variable speed blower motor technology provides ultimate humidity control, quieter sound levels and year-round energy savings.
- Optional indoor or outdoor combustion air. In addition, combustion air may be piped to either the top or side of the cabinet on all upflow models. A special molded fitting is provided to ease installation.
- Solid bottom is standard.
- Control board diagnostics.

A variety of cooling coils and plenums designed to use with the Thermal Zone® 95% A.F.U.E. gas furnaces are available as optional accessories for air conditioning models.

†A.F.U.E. (Annual Fuel Utilization Efficiency) calculated in accordance with Department of Energy test procedures.

"Proper sizing and installation of equipment is critical to achieve optimal performance. Split system air conditioners and heat pumps must be matched with appropriate coil components to meet ENERGY STAR criteria. Ask your Contractor for details or visit www.energystar.gov."

90 PLUS HIGH EFFICIENCY UPFLOW GAS FURNACE

STANDARD EQUIPMENT

Completely assembled and wired; heat exchanger; primary: 409 stainless steel, secondary: 29-4C stainless steel; induced draft; pressure switches; redundant main gas control; blower compartment door safety switch; solid state time on/off blower control; limit controls; manual shut-off valve; 100% safety lock out; cool fan off delay; field selectable heat fan off delay; one hour automatic retry; power and self-test diagnostics; flame sense current diagnostics; electronic air cleaner connections; twinning (built-in) features; humidifier connections; humidifier on/off delay; low speed continuous fan option; single speed option for heating and cooling applications; pressure regulator for natural and L.P. (propane) gasses; transformer; direct drive, multi-speed blower motor. (Please note: a thermostat is not included as standard equipment.)

OPTIONAL EQUIPMENT

Side and bottom filter racks; return air cabinet for all sizes.

NOTE: Furnace is not listed for use with fuels other than natural or L.P. (propane) gas.

All models can be converted by a qualified distributor or local service dealer to use L.P. (propane) gas without changing burners. Factory approved kits must be used to convert from natural to L.P. (propane) gas and may be ordered as optional accessories from a parts distributor.

For L.P. (propane) operation, refer to Conversion Kit Index Form.

WARNING

THIS FURNACE IS NOT APPROVED
OR RECOMMENDED
FOR USE IN MOBILE HOMES

PHYSICAL DATA AND SPECIFICATIONS—UPFLOW MODELS

U.S. and Canadian Models

HIGH FIRE INPUT BTU/HR [kW] ① 45,000 [13.19] 60,000 [17.58] 75,000 [21.98] 75,000 [21.98] 90,000 [26.38] 105,000 [30.77] 120,000 [35.17] LOW FIRE INPUT BTU/HR [kW] ② 31,500 [9.23] 42,000 [12.31] 52,500 [15.39] 52,500 [15.39] 63,000 [18.46] 73,500 [21.54] 84,000 [24.62] HEATING CAPACITY BTU/HR [kW] 42,000 [12.31] 56,000 [16.41] 70,000 [20.51] 70,000 [20.51] 84,000 [24.62] 97,000 [28.43] 113,000 [33.12] HIGH ALTITUDE INPUT 8000 ② 30,600 [8.97] 40,800 [11.96] 51,000 [14.95] 51,000 [14.95] 61,200 [17.94] 71,400 [20.93] 81,600 [23.91]	MODEL NUMBERS	TZ92UP453TA(X)	TZ92UP603TA(X)	TZ92UP753TA(X)	T79211P754TΔ(X)	T792IIP905TA(X)	T79211P105TΔ(X)	T79211P125TA(X)
LOW FIRE INPUT BTUHF [IW]		` ,	` ,	, ,	` ,	` '	` ,	` '
HEATING CAPACITY BTUHR IW 42,000 [12.31] 56,000 [16.41] 70,000 [20.51] 70,000 [20.51] 84,000 [24.62] 97,000 [28.43] 113,000 [33.12] HIGH ALTITUDE NUTPUT 5000								
HIGH ALTITUDE INPUT 8000°								
HIGH ALTITUDE OUTPUT AT 800° (HIGH FIRE) [kW]								
AT 8000 (HIGH FIRE) [kW]		30,000 [6.97]	40,000 [11.90]	31,000 [14.93]	31,000 [14.93]	01,200 [17.94]	71,400 [20.93]	
Imm	AT 8000' (HIGH FIRE) [kW] 2		,	, ,	, , ,	, , ,	,	75,888 [22.24]
SPEED SPEE								
MINIMUM EXT. STATIC PRESSURE (IN. W.C.) [kPa]								
PRESSURE (IN. W.C.) [kPa] .10 [0.25] .12 [0.29] .12 [0.29] .12 [0.29] .12 [0.29] .20 [0.49] .	MOTOR FULL LOAD AMPS	8.7	8.7	8.7	12	12	12	12
RESSURE (IN. W.C.) [kPa] .80 [0.2] .		.10 [0.25]	.12 [.029]	.12 [.029]	.12 [.029]	.15 [.037]	.20 [.049]	.20 [.049]
[.049 kPa] W.C. E.S.P. [L/s]		.80 [0.2]	.80 [0.2]	.80 [0.2]	.80 [0.2]	.80 [0.2]	.80 [0.2]	.80 [0.2]
A = 1200		850	725	765	1180	1275	1400	1250
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		780	900	1080	1180	1450	1604	1450
$ \begin{bmatrix} 1.124 \text{ k/a} \end{bmatrix} \text{ W.C. E.S.P. [L/s]} \\ \hline C = 800 & C = 800 & C = 800 & C = 1200 & C = 1400 & C = 1400 & C = 1400 \\ \hline D = 600 & D = 600 & D = 600 & D = 1000 & D = 1200 & D = 1200 & D = 1200 \\ \hline A = 900 & A = 900 & A = 900 & A = 1200 & A = 1500 & A = 1500 & A = 1500 \\ \hline B = 750 & B = 750 & B = 750 & B = 1050 & B = 1200 & B = 1200 \\ \hline C = 600 & C = 600 & C = 600 & C = 900 & C = 1050 & C = 1050 & C = 1050 \\ \hline D = 450 & D = 450 & D = 450 & D = 750 & D = 900 & D = 900 & D = 900 \\ \hline TEMPERATURE RISE-HIGH FIRE RANGE IN DEGREES °F [°C] & [16.7-33.3] & [22.2-38.9] & [22.2-38.9] & [19.4-36.1] & [19.4-36.1] & [22.2-38.9] & [22.2-3$								
D = 600								
A = 900	[.124 kPa] W.C. E.S.P. [L/s]							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
D = 450 D = 450 D = 450 D = 450 D = 750 D = 900 D =								
TEMPERATURE RISE-HIGH FIRE RANGE IN DEGREES °F [°C] [16.7-33.3] [22.2-38.9] [22.2-38.9] [19.4-36.1] [19.4-36.1] [22.2-38.9] [27.8-4.4] [27.8-4.	[.124 kPa] W.C. E.S.P. [L/s]							
RANGE IN DEGREES °F [°C] [16.7-33.3] [22.2-38.9] [22.2-38.9] [19.4-36.1] [19.4-36.1] [22.2-38.9] [27.8-4.4] TEMPERATURE RISE-LOW FIRE RANGE IN DEGREES °F [°C] [8.3-25] [19.4-36.1] [19.4-36.1] [19.4-36.1] [11.1-27.8] [13.9-30.6] [16.7-33.3] [22.2-38.9] MAX. OUTLET AIR TEMPERATURE 160 170 180 170 165 180 180 RETURN AIR CABINETS (OPT.) C17B (2) 12" x 16" (2) 12" x 16" (2) 12" x 16" (2) 12" x 16" (2) 12" x 20" (2) 12" x								
RANGE IN DEGREES °F [°C] [8.3-25] [19.4-36.1] [19.4-36.1] [11.1-27.8] [13.9-30.6] [16.7-33.3] [22.2 – 38.9] MAX. OUTLET AIR TEMPERATURE 160 170 180 170 165 180 180 RETURN AIR CABINETS (OPT.) RXGR- FILTER SIZE [IMM] C17B (2) 12" x 16" (2) 12" x 16" (2) 12" x 16" (2) 12" x 16" (2) 12" x 20" (2) 12								
RETURN AIR CABINETS (OPT.) RXGR- FILTER SIZE [mm] STANDARD, HIGH VELOCITY PERMANENT FILTER (IN.) APPROX. SHIPPING WEIGHT (LBS.) [kg] C178 C178 C178 (2) 12" x 16" [305 x 406] (2) 12" x 20" [305 x 508] (2) 14" x 16" [305 x 508] (2) 12" x 20" [305 x 508] (305 x 508] (2) 14" x 16" [305 x 508] (305 x								
RXGR- FILTER SIZE [mm] (2) 12" x 16" [305 x 406] (2) 12" x 20" (2) 12" x 20" [305 x 508] (2) 12	MAX. OUTLET AIR TEMPERATURE	160	170	180	170	165	180	180
PERMANENT FILTER (IN.) APPROX. SHIPPING WEIGHT (LBS.) [kg] 153/4 X 25 X 1	RXGR- FILTER SIZE	(2) 12" x 16"	(2) 12" x 16"	(2) 12" x 16"	(2) 12" x 20"	(2) 12" x 20"	(2) 12" x 20"	(2) 14" x 16"
(LBS.) [kg] [53.2] [56.0] [58.2] [63.2] [67.3] [68.2] [72.3]		15 ³ / ₄ x 25 x 1	15 ³ / ₄ x 25 x 1	15 ³ / ₄ x 25 x 1	15 ³ / ₄ x 25 x 1	19 ¹ / ₄ x 25 x 1	19 ¹ / ₄ x 25 x 1	22 ³ / ₄ x 25 x 1
AFUE ③ 95.0% 95.0% 95.0% 95.0% 95.0% 95.0% 93.3%								
	AFUE ③	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	93.3%

NOTES: All models are 115V, 60HZ, 1 phase. Gas connection size for all models is 1/2" [13 mm] N.P.T.

① See Conversion Kit Index Form for high altitude derate.

WARNING: Some heating airflow values may be higher than those required for cooling. Be sure to size duct systems for highest possible airflow value.

[©] Canadian installations only.

③ In accordance with D.O.E. test procedures.
*E=Standard

^{*}N=NOx Models

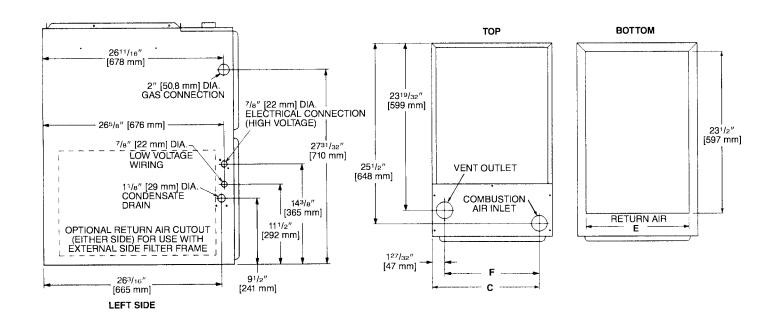
MODEL IDENTIFICATION

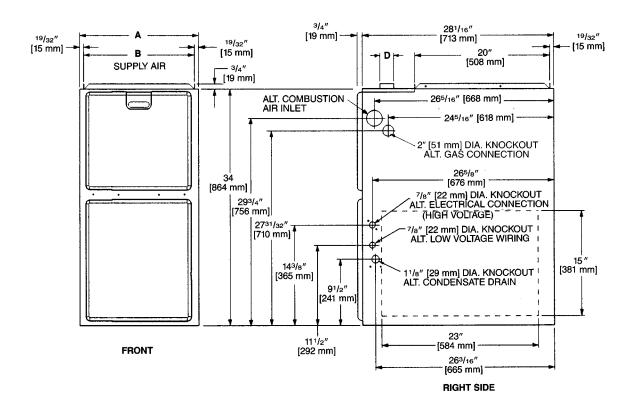
 TZ
 9
 2
 UP
 45
 3TA

 Thermal Zone®
 90% 2 Stage, Efficient Variable Speed ECM Motor
 Upflow Designation
 Heating Input Designation
 3TA = 1100-1300 [519-613.5 Nominal Air Nom

Electric Ignition	Input BTU/HR	
45	45,000 [13.19 kW]	
60	60,000 [17.58 kW]	
75	75,000 [22 kW]	
90	90,000 [26.38 kW]	
10	105,000 [30.77 kW]	
12	120,000 [35.17 kW]	

3TA = 1100-1300 CFM
[519-613.5 L/s]
Nominal Airflow


4TA = 1500-1700 CFM
[707.9-802.3 L/s]
Nominal Airflow


5TA = 1900-2100 CFM
[896.7-991.1 L/s]
Nominal Airflow

 $\underline{\textbf{x}}$

[] Designates Metric Conversions

UPFLOW MODELS

MODEL					LEFT	MINIMUM CLEARANCE (IN.) [mm]						
TZ92UP-	Α	В	С	D	E	F	SIDE	RIGHT SIDE	BACK	ТОР	FRONT	VENT
453TA(X)	17.5 [445]	16 ¹¹ /32 [415]	155/8 [397]	2 [51]	15 [422]	13 ²⁵ /32 [352]	0	0	0	1 [25]	2 [51]	0
603TA(X)	17.5 [445]	16 ¹¹ /32 [415]	155/8 [397]	2 [51]	15 [422]	13 ²⁵ /32 [352]	0	0	0	1 [25]	2 [51]	0
753TA(X)	17.5 [445]	16 ¹¹ /32 [415]	155/8 [397]	2 [51]	15 [422]	1325/32 [352]	0	0	0	1 [25]	2 [51]	0
754TA(X)	21 [533]	1927/32 [504]	191/8 [487]	2 [51]	181/2 [511]	179/32 [441]	0	0	0	1 [25]	2 [51]	0
905TA(X)	21 [533]	1927/32 [504]	191/8 [487]	2 [51]	181/2 [511]	179/32 [441]	0	0	0	1 [25]	2 [51]	0
105TA(X)	21 [533]	1927/32 [504]	191/8 [487]	2 [51]	181/2 [511]	179/32 [441]	0	0	0	1 [25]	2 [51]	0
125TA(X)	24.5 [622]	2311/32 [593]	225/8 [575]	2 [51]	22 [600]	20 ²⁵ /32 [530]	0	0	0	1 [25]	2 [51]	0

BLOWER PERFORMANCE DATA—TZ92UP MODELS

MODEL TZ92UP-	BLOWER SIZE (D x W) IN. [mm]	ECM Motor H.p. [w]	BLOWER SPEED	CFM [L/s] AIR DELIVERY EXTERNAL STATIC PRESSURE INCHES WATER COLUMN [kPa]
			HIGH	0.1 [.02] – 0.8 [.20] 1200 [566]
TZ92UP453TA(X)	11 x 7 [279 x 178]	1/2 [373]	MED-HI MED LOW	1000 [472] 800 [378] 600 [283]
TZ92UP603TA(X)	11 x 7 [279 x 178]	1/2 [373]	HIGH MED-HI MED LOW	1200 [566] 1000 [472] 800 [378] 600 [283]
TZ92UP753TA(X)	11 x 7 [279 x 178]	1/2 [373]	HIGH MED-HI MED LOW	1200 [566] 1000 [472] 800 [378] 600 [283]
TZ92UP754TA(X)	12 x 7 [305 x 279]	1 [746]	HIGH MED-HI MED LOW	1600 [755] 1400 [661] 1200 [566] 1000 [472]
TZ92UP905TA(X)	12 x 11 [305 x 279]	1 [746]	HIGH MED-HI MED LOW	2000 [944] 1600 [755] 1400 [661] 1200 [566]
TZ92UP105TA(X)	12 x 11 [305 x 279]	1 [746]	HIGH MED-HI MED LOW	2000 [944] 1600 [755] 1400 [661] 1200 [566]
TZ92UP125TA(X)	11x 10 [279 x 254]	1 [746]	HIGH MED-HI MED LOW	2000 [944] 1600 [755] 1400 [661] 1200 [566]

[] Designates Metric Conversions

GENERAL TERMS OF LIMITED WARRANTY

Thermal Zone® will furnish a replacement for any part of this product which fails in normal use and service within the applicable period stated, in accordance with the terms of the limited warranty.

For Complete Details of the Limited Warranty, Including Applicable Terms and Conditions, See Your Local Installer or Contact the Manufacturer for a Copy.

Primary and Secondary Heat Exchanger	Limited Lifetime
Conditional Parts Warranty	
(Registration Required)	Ten (10) Years
Conditional Unit Replacement Warranty	

(Registration Required).....Ten (10) Years

ACCESSORIES—UPFLOW

VENT TERMINATION KITS CONCENTRIC: HORIZONTAL/ VERTICAL =

RXGY-E03A (US & Canadian Installations)

HORIZONTAL TWO PIPE: RXGY-D02, RXGY-D03, RXGY-D04

(US Installations)

RXGY-D02A, RXGY-D03A, RXGY-D04A (Canadian Installations)

RXGY-G02 (US Only)

CONDENSATE PUMP KIT: RXGY-B01 **NEUTRALIZER KIT**: RXGY-A01

FOSSIL FUEL KIT: RXPF-F01, RXPF-F02 (TVA)

RETURN AIR PLENUM: RXGR-C17B, RXGR-C21B, RXGR-C24B

PLENUM DATA FOR "A" COILS

Plenum adapters are required in some instances for use on upflow applications when plenum and furnace size do not match.

FURNACE WIDTH IN. [mm]	PLENUM WIDTH IN. [mm]	PLENUM ADAPTER UPFLOW	COIL Plenum
14 [356]	16 ¹ / ₄ [413]	RXAA-C171	RXAL-B16BU
14 [356]	201/4 [514]	RXAA-C172	RXAL-B20BU
171/2 [445]	16¹/4 [413]	RXAA-C185	RXAL-B16BU
171/2 [445]	201/4 [514]	RXAA-C173	RXAL-B20BU
171/2 [445]	215/8 [549]	RXAA-C187	RXAL-B21BU
171/2 [445]	25 ¹ / ₄ [641]	RXAA-C174	RXAL-B25BU
21 [533]	25 ¹ /4 [641]	RXAA-C175	RXAL-B25BU
21 [533]	22 ¹ /4 [565]	RXAA-C176	RXAL-B22BU
21 [533]	215/8 [549]	RXAA-C188	RXAL-B21BU
24 ¹ / ₂ [622]	25 ¹ /4 [641]	RXAA-C177	RXAL-B25BU
241/2 [622]	215/8 [549]	RXAA-C187	RXAL-B21BU

LP CONVERSION KITS:

U.S./Canadian RXGJ-FP19 or RXGJ-FP21

EXTERNAL BOTTOM FILTER RACK: RXGF-CB EXTERNAL SIDE FILTER RACK: RXGF-CA

FILTER RACK FILTER SIZES* INCHES [mm]					
MODEL TZ92UP-	RXGF-CB (BOTTOM)	RXGF-CA (SIDE)			
453TA(X)	15 ³ / ₄ x 25 [400 x 635]	15 ³ / ₄ x 25 [400 x 635]			
603TA(X)	15 ³ / ₄ x 25 [400 x 635]	15 ³ / ₄ x 25 [400 x 635]			
753TA(X)	15 ³ / ₄ x 25 [400 x 635]	15 ³ / ₄ x 25 [400 x 635]			
754TA(X)	19 ¹ / ₄ x 25 [489 x 635]	15 ³ / ₄ x 25 [400 x 635]			
905TA(X)	19 ¹ /4 x 25 [489 x 635]	15 ³ / ₄ x 25 [400 x 635]			
105TA(X)	19 ¹ / ₄ x 25 [489 x 635]	15 ³ / ₄ x 25 [400 x 635]			
125TA(X)	22 ³ /4 x 25 [578 x 635]	15 ³ / ₄ x 25 [400 x 635]			

^{*}Filter racks are shipped without filters.

Filters shipped with furnace may be used or a suitable 1" [25.4 mm] filter.

FOR HIGH ALTITUDES:

HIGH ALTITUDE KIT:

INPUT BTU/H	R [kW]	HIGH ALTITUDE KIT NO.
453TA		RXGY-F18
603TA		RXGY-F18
753TA		Not Required
754TA		Not Required
905TA		RXGY-F20
105TA		Not Required
125TA		RXGY-F21

Option – 278 furnaces are shipped with #51 DMS orifices installed. This is one drill size smaller than standard furnaces to account for expected average elevations and heating values typically seen in these areas.

CAUTION: Always follow National Fuel Gas Code (NFGC) guidelines when converting for high altitudes.

For all installations above 2000 ft. (including all option -278 models), the burner orifice size needs to be recalculated and verified. A burner orifice change may still be required. See Installation Instructions for more information.

NOTE: For Canadian installations only, an optional derate (manifold gas pressure reduction) method may be used to adjust the furnace for altitude. See Installation Instructions for more information. This optional method may **NOT** be used for U.S. installations.

(U.S. Models—Kit packaged with furnace. Requires field installation).

Before proceeding with installation, refer to installation instructions packaged with each model, as well as complying with all Federal, State, Provincial, and

"In keeping with its policy of continuous progress and product improvement, the right is reserved to make changes without notice."

PRINTED IN U.S.A. 8-09 DC FORM NO. GTZ-501

Local codes, regulations, and practices.